BRAIN: A First-Principles Blueprint for Cognitive
Agents

Ana Paola Oviedo Salgado

August, 2025

Abstract

In an era dominated by frameworks, prepackaged architectures, and
boilerplate engineering, I decided to develop my agent from the very
root: BRAIN, a first-principles blueprint for cognitive agents. BRAIN
is defined purely from formal agent theory, emphasizing foundational
constructs such as percepts, policies, state representations, and eth-
ical constraints, rather than ad-hoc software patterns. We formalize
BRAIN as an agent (S, A, P, 7, R, M), explicitly grounding its behavior
in theoretical decision-making models and memory persistence mech-
anisms. This paper outlines the mathematical underpinnings of each
module, proposing a hybrid approach that combines rule-based reason-
ing with learned policy components. Beyond technical detail, BRAIN
serves as a philosophical statement: a return to first principles as the
true foundation for engineering intelligence.

1 Introduction

My journey into Computer Science underwent a profound transformation af-
ter encountering the Theory of Computation. It was then that my perception
shifted from viewing the discipline as a mere collection of frameworks and
libraries to understanding it as the rigorous study of intelligence, rationality,
and computation itself. This fundamental realization ignited a commitment
to ground my work and studies firmly in the enduring principles of the-
ory, mathematics, and the foundational concepts that define this discipline.
In today’s rapidly evolving technological landscape, the abundance of tools
and frameworks often enables the construction of impressive systems with-
out a deep engagement with their underlying foundations. However, I hold
a conviction in the pursuit of truth and rigorous logic. I believe that true
understanding in Computer Science transcends superficial implementation,



revealing a profound connection to universal truths that unify mathematics,
philosophy, epistemology, and even neuroscience. While technological trends
may emerge and recede, these first principles remain immutable, serving as
the timeless bedrock of our field. To reduce Computer Science solely to
the development of routine applications feels antithetical to its essence as
the polymath of all disciplines. By venturing beyond the confines of pre-
built solutions, we unlock the true potential of our work, transforming it
from a shallow, binary exercise into a quest for deeper understanding. This
philosophical conviction directly underpins the design and development of
BRAIN. Far from being simply another automation script, BRAIN is en-
gineered to embody the very essence of intelligence: perception, memory,
decision-making, and rational action. It is conceived as a model-based, hy-
brid reflex-agent, specifically wired to interact with clients and facilitate car
insurance renovations. Rooted entirely in first principles, this paper formal-
izes BRAIN’s architecture, elucidating its mathematical underpinnings and
its commitment to foundational cognitive engineering.

2 Formal Agent Design of BRAIN

Before jumping into implementation, it is essential to ground BRAIN in
rigorous agent formalism. Coding without a theoretical foundation can lead
to fragile or ad-hoc solutions that lack coherence and transparency.

An agent is any entity that perceives its environment through sensors
and acts upon it through actuators to achieve certain objectives. In the
context of BRAIN, the formal components can be described as follows:

e Agent: BRAIN itself, conceived as a software program with cognitive
capabilities.

e Environment: Incoming WhatsApp messages, operational workflows,
and external APIs that BRAIN interacts with.

e Percepts: Messages received from users via WhatsApp, including all
associated metadata.

e Sensors: The NLP pipeline that allows BRAIN to interpret and ex-
tract meaning from percepts, as well as the memory engine that pro-
vides contextual awareness and historical understanding.

e Actions: Outgoing responses delivered through API calls or webhooks
to the main platform or user interface.



e Actuators: The mechanisms through which BRAIN transmits its
chosen actions back into the environment, typically through structured
API responses.

Grounding BRAIN in this formal agent framework ensures clarity, pro-
motes reproducibility, and aligns the system with first-principles thinking.

3 Formal Agent-Theoretic Model of BRAIN

To rigorously define BRAIN’s operational paradigm, we formalize it as a six
tuple (S, A, P,m, R, M), where each component represents a fundamental
aspect of intelligent agency.

e S: State Space. The set of all possible internal configurations of
BRAIN, representing its current understanding of the car insurance
renovation dialogue and context. A state s € S is a comprehensive rep-
resentation derived from processed percepts and accumulated memory.
Formally, s = (p/, m), where p’ is the processed percept (e.g., extracted
intent and entities) and m is the current memory state (e.g., filled slots,
policy details).

e A: Action Space. The set of all possible actions BRAIN can per-
form in the context of car insurance renovation. Each action a € A is a
discrete operation executable via actuators, influencing either the cus-
tomer interaction or internal state. Examples include ask_for_policy_number,
provide_renovation_quote, confirm policy_update, escalate_to_human_agent,
request_vehicle_details.

e P: Percept Space. The set of all possible raw inputs (percepts)
that BRAIN receives from its environment. A percept p € P is an
observation at a given time t, such as a WhatsApp message string
related to insurance renovation along with metadata (sender, times-
tamp, etc.). For example: "Hey, I want to renew my car insurance for
policy number XYZ123.”

e 7: Policy. BRAIN’s decision-making function, mapping states to ac-
tions: 7 : .S — A. In BRAIN’s hybrid architecture, 7 is composed of a
rule-based component mr and a learned component 7y, orchestrated
by the decision engine. Thus, 7(s) = DecisionEngine(ng(s), 7(s)).
This policy determines the most appropriate response or internal op-
eration for an insurance renovation query.



e R: Reward Function. A scalar function R : S x A — R that quan-
tifies the desirability of performing an action a in a state s. In the
insurance domain, rewards might be tied to successful policy renova-
tions, increased customer satisfaction scores, reduced escalation rates,
and overall conversational efficiency.

e M: Memory. Represents BRAIN’s persistent context across interac-
tions. Formally, M is a dynamic structure that stores historical states,
user-specific slots (e.g., policy numbers, vehicle details), and decision
traces. It enables BRAIN to conduct coherent multi-turn conversa-
tions and maintain continuity over time.

By defining BRAIN as (S, A, P, 7w, R, M), we establish a rigorous agent-
theoretic foundation that bridges theoretical decision models and practical
conversational Al design.

4 Perception and State Representation

To interact meaningfully with its environment, BRAIN must perceive exter-
nal stimuli and convert them into structured internal representations. This
section defines the formal structure through which BRAIN interprets and
reasons about the world.

4.1 Percept Space and Processed Percepts

BRAIN does not perceive the world directly, but through structured repre-
sentations of raw events.

Let P denote the percept space, the set of all possible raw inputs p;
at time t, each representing a user’s message and its context:

pr = (U, Tt, Cy, My)
where:
e U, is the raw text utterance.
e T} is the timestamp.
e (; is the communication channel (e.g., WhatsApp).

e M, is metadata (e.g., user ID, language).



These raw percepts are passed through BRAIN’s primary sensor, the
NLP pipeline. This sensor function

Ssensor : P — P’
produces a processed percept:
P; = Ssensor(pt) = (Intent,, Entities;)

where the user intent and relevant entities are extracted for reasoning.

4.2 State Representation

To make rational decisions, BRAIN maintains a state s; at each timestep t,
which integrates both perception and memory:

St = (p;a mt)
Here:
e p) is the most recent processed percept.

e m; is the current memory state, encapsulating past knowledge and
session context.

This state s; provides a sufficient statistic for decision-making, capturing
what BRAIN currently perceives and remembers.

For a detailed discussion of memory architecture and update mecha-
nisms, see Section [6}

5 Policy and Decision-Making Formalism

The policy 7 represents the core of BRAIN’s intelligence—the mapping from
states to actions that embodies rational decision-making. Unlike mono-
lithic approaches that rely solely on learned behaviors or rigid rule systems,
BRAIN employs a hybrid policy architecture that combines the inter-
pretability of rule-based reasoning with the adaptability of learned compo-
nents.



5.1 Hybrid Policy Composition
BRAIN’s policy 7 is formally decomposed as:
7(s) = DecisionEngine(nr(s), 71(s),C(s))
where:

e 7w : S5 — A is the rule-based policy encoding domain expertise and
explicit logical constraints

o 7 : S — A(A) is the learned policy producing a probability distri-
bution over actions

e C:5xA— {0,1} is the constraint function ensuring ethical and
safety compliance

e DecisionEngine orchestrates these components through a priority-based
selection mechanism

5.2 Rule-Based Policy 7r

The rule-based component encodes explicit domain knowledge through log-
ical predicates:

wRr(s) = arg rgleajc;wi -I[Rule;(s) = aq]

where Rule;(s) are logical conditions and w; are rule weights encoding
priority.
Example rules in the insurance domain:

e Rule;(s): If Intent(s) = policy_inquiry A PolicyNumber(s) = ), then
a = ask_policy_number

e Ruley(s): If Intent(s) = complaint A Escalation(s) = required, then
a = escalate_human

5.3 Learned Policy 7

The learned component employs a neural architecture trained on historical
interaction data:

7 (s) = softmax(fy(s))



where fp : S — R4l is a neural network parameterized by 6, trained to
maximize expected cumulative reward:

0" = argmax B, o)p[R(s, a) - logmz(als)]

5.4 Decision Engine Integration
The DecisionEngine implements a hierarchical selection mechanism:
1. Constraint Filtering: Remove all actions a where C(s,a) =0

2. Rule Priority: If mg(s) # () and confidence exceeds threshold 7,
select mR(s)

3. Learned Fallback: Otherwise, sample from 7y, (s) restricted to constraint-

compliant actions

4. Default Handling: If no valid actions remain, execute safe default
action agefault

This architecture ensures interpretability through rule-based reasoning
while maintaining adaptability through learned components, with safety
guaranteed by constraint enforcement.

6 Memory Model and Cognitive Persistence

An intelligent agent must not only perceive and reason, but also remem-
ber. BRAIN’s memory model is designed to simulate human-like cognitive
persistence by integrating both short-term and long-term memory systems.

Inspired by findings in neuroscience and cognitive science, we partition
the agent’s memory M into two interacting modules:

o My : Working memory, implemented via Redis.

e Mp: Long-term memory, implemented via PostgreSQL.

This dual system allows BRAIN to maintain an ongoing conversational
context while preserving historical knowledge between sessions.



6.1 Hybrid Memory Architecture and Cognitive Persistence

The agent’s memory M is partitioned into working and long-term memory.
This design is inspired by findings in neuroscience and cognitive psychology,
which distinguish between short-term (or working) memory - often asso-
ciated with the prefrontal cortex - and long-term memory stored in more
stable and distributed cortical networks. In humans, this separation enables
fast, real-time conversational flow while retaining important information
over time for learning and context continuity.

BRAIN reflects this biological architecture computationally: Redis acts
as a working memory module, providing low-latency access to recent per-
cepts, intents, and conversational slots to support fluid dialogue. Post-
greSQL serves as the long-term memory system, preserving user profiles and
immutable dialogue histories between sessions. This hybrid design allows
BRAIN to reason in the moment while also exhibiting cognitive persistence
across interactions, just as a human might recall a previous conversation
from memory while engaging in a new one.

6.2 Formal Memory Update Function
We define the memory update function as:
w:(M,s,a) — M’

where M is the current memory, s is the current state, a is the selected
action, and M’ is the updated memory.
Memory is updated in two parallel channels:

1. Redis (M ): Updated at every turn with the latest session state (e.g.,
intent, extracted entities, status).

2. PostgreSQL (Mp): Updated with immutable logs and mutable profile
attributes using an upsert mechanism.

This dual-path design provides fast contextual reasoning during interac-
tions while enabling retrospective analysis, long-term personalization, and
alignment auditing. Together, they support cognitive persistence—continuity
of identity and memory across agent lifetimes.

7 Ethical Guardrails as Formal Constraints

Ethical behavior cannot be an afterthought—it must be formally integrated
into the agent’s decision-making process. BRAIN implements ethical guardrails



through a constraint function that acts as a formal filter on the agent’s
action space.

7.1 Constraint Function Formalism

We define the constraint function C': S x A — {0, 1} as:

where each C; represents a specific ethical or safety constraint. An action
is permissible if and only if C(s,a) = 1.

7.2 Core Constraint Categories

Privacy Constraints (Cprivacy):
e Never request unnecessary personal information
e Mask sensitive data in logs and memory
e Respect user consent boundaries
Safety Constraints (Csagety):
e Prevent harmful recommendations (e.g., invalid insurance advice)
e Avoid actions that could cause financial harm
e Maintain professional boundaries
Fairness Constraints (Cairness):
e Ensure equitable treatment across demographic groups
e Avoid discriminatory language or decisions
e Provide consistent service quality
Transparency Constraints (Ciransparency):
e (learly identify as an Al agent when asked
e Explain reasoning for complex decisions

e Acknowledge limitations and uncertainties



7.3 Dynamic Constraint Evaluation

Constraints are evaluated dynamically at each decision point:

ValidActions(s) = {a € A: C(s,a) =1}

The policy is then restricted to this valid action subset, ensuring that
ethical violations are impossible by construction rather than relying on post-
hoc filtering.

8 Reclaiming Intelligence: Why Cognitive Engi-
neering Demands First Principles

8.1 The Crisis of Shallow Engineering

Modern software development has fallen into a trap of shallow engineer-
ing—building systems through composition of frameworks and libraries
without understanding the underlying principles. This approach produces
brittle systems that fail ungracefully, lack interpretability, and cannot adapt
to novel situations.

In the realm of Al agents, this manifests as:

e Framework Dependency: Systems built on top of changing APIs
and libraries that become obsolete

e Black Box Reasoning: Agents whose decision-making processes are
opaque even to their creators

e Ad-hoc Architecture: Systems cobbled together without theoretical
foundation or formal guarantees

e Narrow Functionality: Agents that work only within their training
distribution

8.2 The First Principles Alternative

BRAIN represents a fundamentally different approach: cognitive engi-
neering grounded in formal agent theory. This approach offers several
advantages:

Theoretical Grounding: Every component of BRAIN is justified by
formal agent theory, ensuring coherence and providing a foundation for rea-
soning about system behavior.

10



Interpretability: The hybrid policy architecture makes decision-making
transparent, with clear rules and learned components that can be inspected
and understood.

Robustness: By building on mathematical foundations rather than
ephemeral frameworks, BRAIN’s core architecture remains stable even as
implementation details evolve.

Extensibility: The formal model provides a clear path for extending
BRAIN’s capabilities while maintaining theoretical consistency.

8.3 Beyond Implementation: A Philosophy of Intelligence

BRAIN is more than a technical system—it embodies a philosophy of
intelligence that views cognition as the interplay of perception, memory,
reasoning, and action. This perspective elevates Al development from mere
engineering to a profound exploration of intelligence itself.

By grounding our work in first principles, we transcend the limitations
of current tools and frameworks. We build systems that embody universal
truths about intelligence, rather than artifacts of temporary technological
constraints.

9 Open Theoretical Challenges

While BRAIN provides a solid foundation for cognitive agents, several the-
oretical challenges remain open for future research:
9.1 Compositional Reasoning

How can BRAIN’s policy components be composed to handle complex,
multi-step reasoning tasks that require coordination between rule-based and
learned components?

9.2 Memory Consolidation

What formal mechanisms should govern the transfer of information from
working memory to long-term memory? How can we ensure important ex-
periences are preserved while preventing memory overflow?

9.3 Ethical Constraint Learning

Can ethical constraints themselves be learned from experience while main-
taining safety guarantees? How do we balance adaptability with unwavering
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adherence to core principles?

9.4 Meta-Cognitive Capabilities

How can BRAIN develop awareness of its own reasoning processes and lim-
itations? What formal frameworks support agent self-reflection and self-
improvement?

9.5 Multi-Agent Coordination

How should multiple BRAIN agents coordinate when operating in shared
environments? What theoretical foundations support collaborative cognitive
agents?

These challenges represent opportunities for advancing both the theoret-
ical understanding of intelligence and the practical capabilities of cognitive
agents.

10 Conclusion

BRAIN represents a return to first principles in the design of cognitive
agents. By grounding every component in formal agent theory—from the
six-tuple specification (S, A, P, 7, R, M) to the hybrid policy architecture
and ethical constraint system—we have created a blueprint for intelligent
systems that transcends the limitations of framework-dependent engineer-
ing.

The philosophical foundation of BRAIN extends beyond technical con-
siderations to embrace a vision of Computer Science as the study of intel-
ligence itself. In an age of rapid technological change, this commitment
to first principles provides stability and direction, ensuring that our work
contributes to lasting understanding rather than ephemeral solutions.

BRAIN demonstrates that rigorous theory and practical implementation
can be unified in the pursuit of genuine artificial intelligence. The formal
models presented here provide both a concrete system architecture and a
foundation for future research into the nature of cognitive agents.

As we continue to develop BRAIN and explore its theoretical implica-
tions, we remain committed to the principle that true intelligence emerges
not from the accumulation of frameworks and libraries, but from deep un-
derstanding of the mathematical and philosophical foundations that govern
rational thought and action.
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The journey toward artificial general intelligence requires more than in-

cremental improvements to existing systems—it demands a fundamental
reconsideration of what intelligence means and how it can be formally char-
acterized and implemented. BRAIN takes a step in this direction, grounding
cognitive engineering in the timeless principles that will endure long after
today’s frameworks have been forgotten.
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